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Abstract. Different magnetic resonance imaging pulse sequences are
used to generate image contrasts based on physical properties of tis-
sues, which provide different and often complementary information about
them. Therefore multiple image contrasts are useful for multimodal
analysis of medical images. Often, medical image processing algorithms
are optimized for particular image contrasts. If a desirable contrast is
unavailable, contrast synthesis (or modality synthesis) methods try to
“synthesize” the unavailable constrasts from the available ones. Most
of the recent image synthesis methods generate synthetic brain images,
while whole head magnetic resonance (MR) images can also be useful
for many applications. We propose an atlas based patch matching algo-
rithm to synthesize T2−w whole head (including brain, skull, eyes etc.)
images from T1−w images for the purpose of distortion correction of dif-
fusion weighted MR images. The geometric distortion in diffusion MR
images due to inhomogeneous B0 magnetic field are often corrected by
non-linearly registering the corresponding b = 0 image with zero diffu-
sion gradient to an undistorted T2−w image. We show that our synthetic
T2−w images can be used as a template in absence of a real T2−w image.
Our patch based method requires multiple atlases with T1 and T2 to be
registered to a given target T1. Then for every patch on the target, mul-
tiple similar looking matching patches are found on the atlas T1 images
and corresponding patches on the atlas T2 images are combined to gener-
ate a synthetic T2 of the target. We experimented on image data obtained
from 44 patients with traumatic brain injury (TBI), and showed that our
synthesized T2 images produce more accurate distortion correction than
a state-of-the-art registration based image synthesis method.
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1 Introduction

Different contrasts of magnetic resonance (MR) images quantify different infor-
mation about the underlying tissues. For example, T1−w and T2−w images pro-
duce signal intensities and contrasts dependent upon the underlying longitudinal
(T1) and transverse (T2) relaxation times of protons. Therefore the complemen-
tary information about tissues observed in multiple MR acquisition sequences
can be exploited in multi-contrast image processing algorithms. If one or more
image sequences are not available due to limited scan times, artifacts, or poor
quality, image synthesis methods have been proposed to generate the missing
sequences from the available ones.

Since the MR properties of tissues can be inherently different between two
contrasts, it is not possible to exactly replicate a real MR scan (e.g. PD−w)
from other modalities (e.g. T1 and T2−w). Therefore the purpose of current
image synthesis methods is to facilitate the existing algorithms by providing a
close approximation to a real acquisition. Usually there is a high degree of cor-
relation between T1 and T2−w images. Hence one can think of a simple image
synthesis as histogram matching, where intensities between two modalities can
be transformed by a one-to-one mapping. This does not impart any additional
information to the synthesized image beyond what is available in the acquired
data. However, most of the current synthesis methods are atlas based. Therefore
the synthetic images contain rich information obtained from atlases, which are
used to explore the relationship between the available data and the missing con-
trasts. Synthesis has been shown to improve performance of existing algorithms
in the absence of real images [1].

Image synthesis methods are targeted toward various image processing appli-
cations. One such application is improving the consistency of acquired images
in longitudinal or multi-site studies [2,3]. Synthesizing images for large scale
image normalization has been proposed to improve the stability of segmentation
algorithms [4,5]. Image synthesis of pathological brains using atlases of normal
subjects has also been shown to provide good segmentations of the pathologies,
e.g., tumor [6] and lesion segmentation [7,8]. Inter-modality registration has also
been improved by enabling more reliable intra-modal registration algorithms via
an intermediate synthetic image (e.g., T1−w to T2−w [9], CT to ultrasound
[10], or MR to CT registration [11]). While registering an MR to a CT image,
registration metrics such as mutual information or cross correlation can possess
many local minima in the optimization, since the MR and CT intensities are not
directly comparable. Therefore first synthesizing a CT from MR, and then regis-
tering the synthetic CT to the original CT improves registration accuracy. The
idea of having an intermediate synthetic image for single channel registration
can be extended to multi-channel registrations [12]. While registering a source
T1 to a target T2, the accuracy can be improved by synthesizing both source T2

and target T1 modalities, and then converting the single channel registration to
a multi-channel one using the combination of real and synthetic images. Simi-
lar intermediate synthetic T2−w images can also be used for distortion correc-
tion in diffusion imaging [13]. For PET reconstruction from MR-PET scanners,
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synthetic CT images, generated from the MR, are used for attenuation correc-
tion of the PET [14,15]. Other applications of synthesis include super-resolution
and artifact correction [16].

In this paper, we propose a patch based synthesis method aimed toward
synthesizing whole head images, with the application to distortion correction
in diffusion weighted imaging (DWI). Diffusion imaging is based on obtaining
T2−w images using a rapid spatial encoding technique (eco-planar imaging EPI)
with and without application of diffusion sensitizing gradients. The strength of
the gradient is given by a b-value. Because of the EPI method, these images are
sensitive to changes in the B0 magnetic field which results in spatial distortion.
The b = 0 image has no diffusion gradient applied, and has contrast comparable
to that of a “structural” T2−w image. The structural image obtained by a spin
echo technique compensates for B0 inhomogeneity and is not distorted. Because
the image contrasts of the b = 0 and the structural T2−w are comparable, reg-
istration methods can be used to correct for the distortion. Diffusion sensitizing
gradients (e.g. b = 1000) are applied to generate diffusion weighted images sen-
sitized to diffusion along a particular direction. These images are subject to the
distortion due to B0 inhomogeneity as well as to the distortion resulting from
eddy current fields induced by the large diffusion gradients. The geometric dis-
tortion from susceptibility in the echoplanar imaging techniques used in DWI
are usually corrected by non-linearly registering the b = 0 images to a T2−w
structural images. However, in clinical and acute research settings, T2−w are
sometimes not acquired at all to reduce overall scan times. Also, T2−w images,
if available, may not have been generated with geometric parameters suitable for
the purposes of distortion correction. For example, thick (5 mm) slices are com-
monly sufficient in the clinical setting. In the absence of a real high-resolution
T2, synthetic T2−w images can be used [5,13]. Note that the method in [13] is
applicable only for stripped images, while our method can be used to synthesize
whole head images as well. Usually first step of distortion correction is a linear
registration of b = 0 images to a structural image, preferably T2−w, for a sub-
sequent skull stripping. Therefore synthesis of images with skull are important
for optimal registration. Similar to [14], our method also involves registration of
multiple atlases, consisting of both T1 and T2−w images, to a target T1. Then
we perform patch-matching between the target and the atlases as an additional
step. For every patch on the target T1, we define a neighborhood, and identify
multiple similar looking T1 atlas patches within that neighborhood. Similarity
metrics for the matching patches are computed and the corresponding atlas T2

patches are combined to produce a synthetic T2 of the subject. Similar ideas
of patch matching have been previously used for hippocampus segmentation
[17,18], while we extended it to image synthesis problem in this paper. We com-
pared the accuracy of distortion correction with the synthesis method described
in [14], called Fusion.
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2 Method

Our proposed method uses a combination of atlas registration and patch match-
ing to synthesize T2−w images from T1. A patch is defined as a p × q × r 3D
sub-image around a voxel. We used 3×3×3 patches in our experiments. An atlas
is a pair of images {a

(t)
1 , a

(t)
2 }, where a

(t)
1 s are the T1 of the tth atlas, and a

(t)
2 s

are the atlas T2−w images, t = 1, . . . , T , T being total number of atlases. All a
(t)
1

and a
(t)
2 are assumed to be coregistered. Similarly, a subject is a T1−w image

{s1}, while its synthetic T2−w image is denoted by ŝ2. The atlases a
(t)
1 are first

registered to the subject s1. Although optimal registration of each atlas to the
subject would ideally be performed with deformable registration methods, time
constraints typically have necessitated the use of affine registrations. However,
we used an “approximate” version of the ANTS deformable registration [19]
which takes similar time as an affine one. The parameters of the “approximate
ANTS” are given in Table 1. Essentially after the affine step, the deformable
registration algorithm SyN is applied on a subsampled (by a factor 4) version
of the images with a limited number of iterations. This serves three purposes,
(1) obvious speed enhancement is observed since the images are subsampled,
(2) having TBI subjects in our datasets, limited number of iterations on low res-
olution images prevent the algorithm from going into local minima in presence
of pathologies, (3) having better matching between target and atlases, fewer
atlases are required. This version of the deformable registration takes about
2 min between two 1 mm3 images on Intel Xeon 2.80 GHz 20-core processors. On
the same images, FLIRT [20] takes about 1.5 min. for an affine registration. We
have empirically found that the approximate ANTS provides better matching
than affine, while taking similar computation time as other popular affine regis-
tration tools. Once the a

(t)
1 s are registered to the s1, corresponding a

(t)
2 s are also

transformed using the same deformations. All images are intensity normalized
so that the modes of their white matter intensities are unity. The modes are
automatically found by a kernel density estimator [2].

Table 1. Approximate ANTS parameters are shown in this table.

Transform(-t) Metric(-m) Iterations(-m) Smoothing sigma(-s) Shrink Factor(-f)

Rigid Mattes 100 × 50 × 25 4 × 2 × 1 3 × 2 × 1

Affine Mattes 100 × 50 × 25 4 × 2 × 1 3 × 2 × 1

SyN CC 100 × 1 × 0 1 × 0.5 × 1 4 × 2 × 1

For brevity of notations, we assume that a
(t)
1 and a

(t)
2 also denote registered

atlases in the subject space. Atlas patches of the T1 and T2−w images at the
jth voxel are denoted by a(t)1 (j) and a(t)2 (j), where a(t)1 (j),a(t)2 (j) ∈ R

d×1, d =
pqr. A subject patch at the ith voxel is denoted by s1(i) ∈ R

d×1. For the ith

patch s1(i), we define a neighborhood Ni around the ith voxel, and assume that
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similar looking atlas patches can be found within that neighborhood. Since the
atlases and subject are registered, a small 9 × 9 × 9 neighborhood suffices for
the purpose [18]. Atlas T1 and T2 patches (a(t)1 and a(t)2 ) are collected within the
neighborhood Ni from T atlases and combined in two d × TL matrices A1(i)
and A2(i), respectively, L = |Ni|.

For every s1(i), a few similar looking atlas T1 patches are found from A1(i)
so that their convex combination reconstructs s1(i) [2]. This is formulated as,

s1(i) ≈ A1(i)x(i), x(i) ≥ 0, x(i) ∈ R
TL×1, ||x(i)||0 � TL, (1)

where x(i) is a sparse vector with number of non-zero elements (||x(i)||0) being
much less than its dimension, 0 indicates a TL × 1 vector with all elements
as 0. Only a few elements of x(i) are nonzero, indicating a few atlas patches are
selected from A1(i). Eq. 1 is efficiently solved by elastic net regularization [21],

x(i) = arg min
α

||s1(i) − A1(i)α||22 + λ1||α||1 + λ2||α||22, α ≥ 0. (2)

Both λ1 and λ2 are chosen as 0.01. By minimizing both �1 and �2 norms of x(i),
the sparsity of x(i) is maintained as well as all similar looking patches in A1(i)
are given non-zero weights. Once x(i) is obtained for a subject patch s1(i), a
corresponding synthetic T2 patch is generated by ŝ2(i) = A2(i)x(i). Only the
center voxel ŝ2(i) is chosen as the ith voxel of the synthetic T2−w image.

3 Data

We experimented on two datasets with patients having mild to moderate TBI.
The first set (called HighRes) contains 32 patients having T1−w (1 mm3, TR =
2530 ms, TE = 3 ms, TI = 1100 ms, flip angle 7◦), high resolution T2−w (0.5 ×
0.5×1 mm3, TR = 3200 ms, TE = 409 ms, flip angle 120◦), as well as b = 0 images
(2×2×2 mm3). For this set, we assume that a “pseudo” ground truth distortion
corrected b = 0 is obtained when the distorted one is registered to the original
high resolution T2. The second dataset (called LowRes) also has 32 patients with
T1 (1 mm3), lower resolution T2 (0.5 × 0.5 × 2 mm3), and blip-up blip-down
diffusion weighted images having distorted b = 0 images (2 × 2 × 3.5 mm3),
which were corrected by [22]. In this case, we assume the ground truth corrected
b = 0 to be the one corrected by blip-up blip-down acquisitions [22]. For each
of HighRes and LowRes datasets, we arbitrarily chose 10 atlases for Fusion [14],
and a subset of T = 3 atlases for our synthesis from the same dataset. The
similarity metrics, described in the next section, are computed on the remaining
22 subjects from each dataset. Corrected b = 0 images using our synthetic T2

are compared with those using a Fusion [14] synthetic T2, as well as a baseline
b = 0 to T1 registration, when neither T2 or synthetic T2 are available.

4 Results

To quantitatively measure the accuracy of synthesis, we use the synthetic
images as intermediate steps for distortion correction, where b = 0 images are
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Fig. 1. The top two rows show axial and sagittal views of a patient from HighRes

dataset, where T1−w, T2−w, Fusion [14], and proposed synthesis results are shown.
There is a lesion in the frontal lobe (red arrow) which was not synthesized in Fusion.
Also ventricles and cortex are fuzzier (yellow arrow) as well as hippocampus (red arrow)
has CSF-like intensities in Fusion based T2. The bottom row shows another subject
from the same dataset where the lesion on the left frontal lobe (red arrow) is not well
synthesized in either synthetic T2s. Our method generally produced sharper features
in the cortex and anatomically correct intensities near the hippocampus. (Color figure
online)

deformably registered by ANTS [19] to the synthetic T2, which is also in the
space of original T1 images. The corrected b = 0 is compared to the ground
truth (Sect. 3) b = 0 via peak signal to noise ratio (PSNR). Although the syn-
thesis was performed on whole head, PSNR is computed only on the brain so that
background noise in the sinuses and air pockets are not used in the computation.
Most of the distortion occurs near the brain and skull boundary. Therefore CSF
is most affected by the distortion. To compute if the CSF is correctly aligned
between T1 and b = 0, we first segmented the T1−w images [23], and computed
median b = 0 intensities for only cortical CSF voxels. For this purpose, b = 0
images are normalized to have modes of the WM intensities as 1. CSF being
hyperintense on b = 0, higher median intensities indicate better matching. As
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Fig. 2. The top two rows show distorted b = 0 and corrected b = 0 images via T1, orig-
inal T2, synthetic T2s from Fusion [14] and the proposed method, along with absolute
difference images from the original T2 corrected b = 0. The “Corrected b = 0” indi-
cates b = 0 image corrected by original high resolution T2. The same image slices of
subject #1 of Fig. 1 are shown. Bottom two rows shows similar slices for the subject
#2 from Fig. 1. Yellow arrows indicate the lesions that are better reconstructed with
the proposed synthesis. The colormap of the absolute difference images indicate 0 to
30 % of the maximum intensity of the b = 0 images. Note that the distortion correction
for subject #2 using the T1−w image yielded gross scaling errors. (Color figure online)
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Fig. 3. PSNR between ground truth b = 0 (see Sect. 3 for definition) and T1 or synthetic
T2 corrected b = 0 are shown for (a) HighRes dataset, (c) LowRes dataset. Median CSF
intensities from corrected b = 0 images are shown for (b) HighRes dataset, (d) LowRes

dataset.

the synthetic images are only used as an intermediate step of the distortion cor-
rection, we did not compute any similarity metric between the synthetic T2 and
the original T2.

Fusion, being a registration based voxel-wise method, usually requires more
atlases and more accurate registrations. On the contrary, the proposed method
uses patches from a neighborhood, therefore some degree of registration error
is permitted. An example is shown in Fig. 1, where original T1−w, T2−w, and
synthetic T2−w images are shown for two subjects from HighRes dataset. Fusion
produces fuzzier ventricles (e.g., yellow arrow) and cortex due to minor registra-
tion mismatch. However, both of them have sharper features in the results from
the proposed algorithm. This is evident near the hippocampus (red arrow) as
well, which has CSF-like intensities in the Fusion synthesis. Also there is a lesion
near the left frontal lobe (red arrows) on both subjects, which was not synthe-
sized well in Fusion, since there were no lesions in the atlases in that region. It is,
however, partially synthesized in our method, where CSF patches from nearby
voxels contribute to synthesize the lesion. An example of distortion correction is
shown in Fig. 2 where distorted and corrected b = 0 images of the same subjects
as Fig. 1 are shown. The lesions on both subjects are better registered with our
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synthetic T2 (yellow arrows). Also the cortex and ventricles are generally better
aligned in the proposed method, as seen from the lower values near those regions
in the difference images.

Figures 3(a)–(c) shows the PSNR between ground truth b = 0 and T1 or syn-
thetic T2 based corrected b = 0 images. Median PSNRs for the HighRes dataset
are 23.79, 25.67, and 28.68 dB for T1, Fusion, and proposed synthetic T2 cor-
rected b = 0 s. The numbers are 19.02, 24.34, and 25.62 for LowRes dataset. Our
synthetic T2 provides significantly higher PSNR (p < 0.0001) than both Fusion
and T1 correction for both datasets. Median CSF intensities on the corrected
b = 0 images are 1.29, 1.75, and 2.17 for HighRes data, and 1.23, 1.84, and
1.91 for LowRes data. In this case also, our synthetic T2 is significantly better
(p < 0.001) on both datasets and for both T1 and Fusion T2.

5 Discussion

We have proposed a patch matching method to synthesize whole head T2−w
MR images from T1−w images and demonstrated on 44 patients with TBI that
such synthetic images can substitute for real T2−w images to perform accurate
distortion correction for DWI images. We have compared with a state-of-the-art
registration based voxel-wise fusion method [14] and showed that the proposed
synthesis produces more accurate results than the fusion method.

To register an atlas and a target, we have employed an “approximate ANTS”
registration, which, in comparison to affine registration, is more robust on patho-
logical brains, produces better matching, requires less number of atlases, and
takes similar time. Only 3 atlases are used in all experiments. Although the
accuracy increases slightly with more atlases, 3 atlases already provided bet-
ter results than Fusion. Due to the registration, similar patches can be found
within a small neighborhood, as done in [18], as opposed to patch search within
the whole brain when the atlases are not registered to the subject [2,16]. Also
because of the patch matching instead of voxel-wise analysis, some error in reg-
istrations between atlases and target can be tolerated.

The LowRes dataset produces slightly worse results than the HighRes dataset,
both in terms of PSNR (28.68 vs 25.62 dB) and median CSF intensities (2.17
vs 1.91). The reason is partially due to the fact that the synthesis is performed
with the T2−w atlases having a native 2 mm inferior-to-superior (I-S) resolution
compared to 1 mm I-S resolution on HighRes atlases.

As mentioned in Sect. 1, synthetic images can not perfectly replicate the orig-
inal images. This is especially true in the presence of pathologies, such as Fig. 1,
where the lesions are not well synthesized. However, in absence of a real T2−w,
synthetic images can be used as intermediate data for more accurate distortion
correction. The combination of registration and patch matching provides greater
flexibility than registration alone.
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